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Abstract 

14-coordinated tetrahedral packings of symmetry- 
related spheres in which all the holes are tetrahedral 
are described. The corresponding dual structures with 
vertices in the holes of the original structure form four 
connected nets that subdivide space into congruent 
simple polyhedra. Six tetrahedrally packed sphere 
packings and seven polyhedron packings are described 
and coordinates of vertices given. Examples are given 
of packings of combinations of two or more of the 
space-filling polyhedra. 

1. Introduction 

Sphere packings are of considerable interest in crystal 
chemistry as structures of intermetallic compounds and 
have been extensively studied for that reason. Many 
examples are given by O'Keeffe & B. G. Hyde (1996; 
referred to as O K H  hereinafter). The holes in such a 
packing are sites at which the shortest distance to the 
centers of the nearest spheres is a local maximum 
(Conway & Sloane, 1988). In the familiar closest sphere 
packings, the holes are of two types: tetrahedral and 
octahedral. In crystal chemistry, special interest attaches 
to sphere packings in which all the holes are tetra- 
hedral; these structures are here called tetrahedrally 
packed (t.p.). The b.c.c, sphere packing is the only t.p. 
.structure in which all the tetrahedra are congruent 
(Sommerville, 1923), however very many t.p. structures 
are known in which there is more than one kind of 
sphere and more than one kind of tetrahedron. A 
special class of structures consists of those in which the 
tetrahedron packing is restricted to configurations in 
which five or six tetrahedra meet at an edge; these are 
known as tetrahedrally close-packed (t.c.p.) structures. 
The classic work describing such structures is that of 
Frank & Kasper (1958, 1959) and they are often 
referred to as Frank-Kasper  structures. They have 
special coordination figures of 12, 14, 15 and 16 coor- 
dination and serve as the crystal structures of some of 
the more important of known intermetallic phases (for 
a review, see Shoemaker & Shoemaker,  1986). Many 
other intermetallic crystal structure types are t.p., a well 
known example is that of CuA12 (OKH, p. 255) in which 
there is 10 and 15 coordination. 

As Frank & Kasper explicitly recognized, each 
tetrahedron of a t.p. structure necessarily has four other 
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tetrahedra sharing its faces, so the dual structure 
derived by placing vertices at the tetrahedron centers 
forms a 4-connected net. t  Such nets may also be 
considered as a packing of simple polyhedra (those in 
which exactly three faces meet at each vertex), which, in 
the case of the duals of the Frank-Kasper  structures, 
have faces that are restricted to pentagons and hex- 
agons. Some of these structures are well known in 
chemistry as the structures of clathrate hydrates and 
clathrasils (see e.g. OKH, p. 333). They have also 
become of interest as model structures for foams 
especially since the discovery by Weaire & Phelan 
(1994a) that a foam based on the structure known as 
the type I hydrate (dual of the A15 or Cr3Si structure) 
has the lowest surface area of any known structure of 
uniform volume bubbles, thus refuting a conjecture of 
Kelvin (described in the next paragraph) that had stood 
unchallenged for over 100 years (Weaire, 1997). Recent 
discussions, with references, of the importance of 
Frank-Kasper  and related t.c.p, phases and their duals 
to problems of packing and space filling and to biolo- 
gical structure include those by Sadoc & Mosseri 
(1996), Charvolin & Sadoc (1996) and Rivier & Aste 
(1996). 

The Kelvin structure is derived as the dual of the 
body-centered cubic (b.c.c.) sphere packing, in which 
the centers of the spheres divide space into six tetra- 
hedra per sphere with either four or six tetrahedra 
meeting at each edge. As all the spheres are equivalent, 
the 4-connected net of the tetrahedron centers corre- 
sponds to a packing of congruent polyhedra; in this 
case, Archimedean truncated octahedra. Kelvin's 
conjecture was that the structure of a minimum energy 
foam of uniform bubbles would be topologically 
equivalent to this polyhedron packing. To chemists, the 
net of the packing is familiar as the framework of the 
aluminosilicate sodalite, for which it is usually named 
(OKIt ,  p. 315). In order to take into account the fact 
that the tetrahedra in a b.c.c, structure have unequal 
edges, one must count the eight first and six second 
neighbors in the b.c.c, structure as part of the coordi- 

1" Notice that mathematicians use the term 'dual' of a lattice to refer 
to another lattice that (in the case of primitive lattices) crystal- 
lographers and solid-state physicists call the 'reciprocal' lattice. In this 
sense, the duals of the body-centered lattices referred to below are 
also body-centered tetragonal with c*/a* = 21/2a/c. If c/a = 21/4, the 
lattice is isodual (Conway & Sloane, 1994). 
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nation sphere, and the structure is considered as (8+6) 
coordinated. The dual structure is derived from a 
packing of polyhedra (truncated octahedra) with eight 
hexagonal and six quadrangular (square) faces. Notice 
that the polyhedra are Voronoi polyhedra that contain 
all points closer to a given sphere center than to any 
other, and that their vertices are at the holes of the 
structure. The coordination number is equal to the 
number of faces of the Voronoi polyhedron (Frank & 
Kasper, 1958). It is simple to show (OKH, p. 409) that 
in a t.p. structure the number of tetrahedral holes per 
sphere is ( Z ) / 2 -  1 where (Z) is the average coordi- 
nation number (average number of faces on the 
Voronoi polyhedra). 

If the Kelvin problem is reformulated as that of 
finding the minimum surface area structure of bubbles 
of equal volume and of equal pressure, it is possible that 
the solution will correspond to an assembly of 
congruent bubbles (Kusner & Sullivan, 1996; reprinted 
in Weaire, 1997). Such bubbles will be simple polyhedra 
and will have at least 14 faces (Kusner, 1992). This is 
one of the reasons for describing some other packings 
of congruent polyhedra with 14 faces and the associated 
(dual) sphere packings. 

Another  reason for interest in these structures is that 
some also appear in a chemical context as atomic 
arrangements in crystals, and the existence of other 
structures not yet found in nature provides a powerful 
incentive to the synthetic chemist. In fact, the technique 
of generating 4-connected network structures as the 
duals of t.p. structures is of considerable utility in 
designing such structures. Well known examples, which 
involve structures described by OKH (p. 335), are the 
clathrate hydrate structures known as type I and type 
II, which consist of packings of polyhedra with five- and 
six-sided faces. These are the duals of the A15 (Cr3Si) 
and C15 (MgCu2) structures, both of which are Frank-  
Kasper phases. Another  example is provided by the 
4-connected net of the clathrasil known as sigrna-2 (or 
SGT), which is derived from a packing of two kinds of 
polyhedra: those with twelve pentagonal faces and six 
hexagonal faces, and those with six pentagonal faces 
and three quadrangular faces. The dual structure is t h a t  
of T h S i  2 and the hexagonalfaces  correspond to Th-Th 
'contacts', the pentagonal faces to Th-Si contacts and 
the quadrangular faces to Si-Si contacts. It is noted 
below, however, that not all 4-connected nets of poly- 
hedron packings are the duals of sphere packings. 

In this paper, I start with the body-centered tetrag- 
onal (b.c.t.) lattice packing of which the body-centered 
cubic (b.c.c.) and face-centered cubic (f.c.c.) lattice 
packings are special cases. I then describe some (10+4)- 
coordinated t.p. sphere packings related to a third 
special case of b.c.t. Space-filling polyhedra and their 
packings are derived from these structures. An alter- 
native approach to enumeration of space-filling poly- 
hedra starting from cubic closest packing (c.c.p.) results 

in the identification of five different space-filling poly- 
hedra. Seven distinct packings of equivalent polyhedra 
are identified. Examples are also given of packings 
involving combinations of two or more of these poly- 
hedra. 

2. Sphere packings and holes in b.c.t, and related 
lattices 

A well known transformation (the Bain relationship, see 
e.g. OKH, p. 229) relates the b.c.c, to the f.c.c, structure 
of cubic closest packing (c.c.p.). This involves distortion 
to a body-centered tetragonal lattice with c/a > 1 
(c/a = 1 for b.c.c.). When c/a = 21/2, the structure 
becomes the 12-coordinated c.c.p.; at this point, groups 
of four tetrahedral holes merge into octahedral holes. 
With c/a > 21/2, the coordination is (4+8). Now the 
octahedra become elongated and each octahedral hole 
is split into two at the centers of square pyramids. There 
are now two square-pyramidal and two tetrahedral 
holes per sphere. In the well known ThCr2Si2 structure 
type [the most populous of all ternary inorganic crystal 
structure types (Pearson, 1985)], Si and Cr fill these 
holes in a packing of Th. 

In c.c.p., the Voronoi polyhedron is a rhombic 
dodecahedron and the vertices of the polyhedron 
packing are 4- and 8-connected; in b.c.t, with c/a > 2 a/2, 
the Voronoi polyhedron is an elongated dodecahedron 
and the vertices of the polyhedron packing are 4- and 
5-connected. Therefore, neither of these structures 
gives rise to a 4-connected net or to a space filling by 
simple polyhedra. If c.c.p, is subject to an opposite 
distortion to b.c.t, with c/a < 21/2, the octahedra 
surrounding octahedral holes are compressed so that 
one diagonal is shorter than the other two. The octa- 
hedral holes are now split into four tetrahedral holes 
with the short diagonal of the octahedron forming one 
edge and the structure is t.p. For 1 < c/a < 21/2, the 
coordination is (8+4+2).  For c/a = 1 (b.c.c.), the 
coordination is (8+6). Continuing the compression 
along e, one has f o r  (2/3) 1/2 < c/a < i that the coor- 
dination is (8+2+4),  and for c/a = (2/3) 1/2 the coor- 
dination is (10+4). These coordination changes with 
cell-edge ratio are summarized in Fig. 1. T.p. (10+4)- 
coordinated sphere packings are of particular interest in 
the context of this paper and are discussed next. 

10+4 8+6 12 

2+8+4 I 8+2+4 1 8+4+2 I 

c/a= ~1(2/3) 1 ~/2 

4+8 

Fig. 1. Variation of coordination number with axial ratio for b.c.t. 
lattices. (p + q- t - r )  indicates that there are p nearest, q next- 
nearest, and r next-next-nearest neighbors; and a total of p + q + r 
faces on the Voronoi polyhedra of the lattice points. 
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3. Top. (10+4)-coordinated sphere packings 
The b.c.t, s tructure with c /a  = (2/3) 1/2 = 0 .816 . . .  is a 
well known (see e.g. Hellner,  1986; Wells & Chamber-  
land, 1987; Koch & Fischer, 1992) (10+4)-coordinated  
structure that  is called b.c.t, by O K H  (p. 229). Each 
lattice point has ten neighbors at a distance c and four 
fur ther  neighbors at a. A n  interesting feature  of the 
b.c.t, s tructure is that there are close-packed 36 layers 

pa ra l l e l  to {110} al though the stacking of the layers is 
not close packed,  ra ther  each sphere in one layer is over 
the midpoint  of the line joining the centers of two 
contiguous spheres in the layer below. As  shown in Fig. 
2, the centers of spheres in each layer may  be placed in 
one of three equivalent  positions with respect to the 
layers below. In the figure they are labeled D, E and F 
with respect to an initial layer at A (see e.g. Wells, 1984, 
p. 149; O K H ,  p. 246). The derived packings can be 
described in a manner  analogous to the familiar method 
of describing closest packings. 

In closest packing, two kinds of layer are identified. 
O n e ,  labeled h, has similar layers on both sides such as 
B in the sequence A B A .  T h e  second, labeled c, has 
different layers one each side such as B in the sequence 
A B C .  T h e  two  distinct packings of one kind of sphere 
are h (h.c.p.) and c (c.c.p.) and all packings can be 
character ized by a sequence of h's and c's. 

A similar system can be used for the 10-coordinated 
packings but now there are three possibilities. A layer 
D in a sequence A D A  has the same layer on each side, 
let us call it s. On the other  hand, layers D in sequences 
A D E  and A D F  have different layers on each side, the 
layers differing by being rota ted by -t-120 ° with respect 
to each other. The two possibilities are enantiomers,  so 
they are labeled r and l (right and left). The possible 
packings of one kind of sphere (i.e. those in which all 
spheres are re lated by symmetry)  can now be expressed 
as s, r ( o r / ) ,  rl and rrll. 

The sphere centers in three of these packings corre- 
spond to invariant  lattice complexes so they are labeled 
by the symbols (I, Q and D) used for such structures 

Fig. 2. Positions for stacking 3 6 layers of spheres alcove a layer in 
position A. B and C are positions for closest packing. D, E and F 
are the positions for the 10-coordinated sphere packings discussed 
in the text. 

(Fischer & Koch, 1983; Hellner,  1986).t The fourth is 
derived as a combination of the previous two and is 
labeled D Q .  It appears  to have been over looked in 
earlier discussions of sphere packings of which I am 
aware. 

The simplest packings involving two kinds of sphere 
are rs and rsls. Coordinates  for these packings are also 
given below where they are also labeled as I Q  and ID,  
respectively. Lattice parameters  are given for unit 
d iameter  spheres. In each case, a sphere has ten 
neighbors in contact  a n d  four fu r the r  away at a distance 

1/2 (3/2) times the diameter ,  and in each case the centers 
divide space into six te t rahedra  per  sphere. I, D and Q 
correspond to packings 9, 10 and 11 of Koch & Fischer 
(1992). 

s = I,  layer sequence A D . . .  symmetry  I 4 / m m m ,  
a = (3/2)1/~ c = 1, c /a  = 0.816 . . . .  sphere centers at 
2(a): 0, 0, 0; ½, ½, ½. This is the b.c.t, s tructure and I is the 
symbol for a body-centered lattice. 

r = Q, layer sequence A D E  . . . .  symmetry  P6422 
(or the enant iomorph P6222), a = 1, c = 3 x 31/2/2, 
c / a =  2.598 . . . .  sphere centers at 3(d): ½,0,½; 0,½,~; 
½, ~, ~. The 3 6 layers are normal  to e. For c /a  "~ 1, the  
structure (now 4-coordinated) is that of the Si atoms in 
quartz  - hence the label Q. If the P6422 structure 
describes r, then the P6222 enant iomorph describes/ .  

rl = D,  layer sequence A D E F . . . ,  symmetry  Fddd, 
a = l ,  b = 3  l/z, c = 2 x 3 1 / 2  , sphere centers at 8(a): 
.nL.(1, _18 ,8,51. '8'8'5 1.5,1, ~; 1, ~, ~). The 3 6 layers are normal  
to e. For a = b = c, the positions of the sphere centers 
correspond to the d iamond structure - hence the label 
D. 

rrll = D Q ,  layer sequence A D E A F E D F  . . . .  
symmetry  Fddd,  a -- 1, b = 31/2, c = 4 x 31/2, sphere 
centers at 16(g):-~, ~, z; etc., z -- 5 / 1 6 -  0.3125. The 3 6 

layers are normal  to e. 
rs = IQ,  layer sequence A D A E A F  . . . .  symmetry  

P6422 (or the enant iomorph P6222), a -- 1, c = 3 × 31/2. 
Q (r) spheres at 3(a): 0, 0, 0; etc., I (s) spheres at 3(d): 
1 3 6 ~, O, 1; etc. T h e  layers are normal  to e. 

r s l s - - I D ,  layer sequence A D A E  . . . .  symmet ry -  
Cccm,  a = l ,  b - -31 /2  , c = 2 x 3 1 / 2  , D  (r or /) sphere 
centers at 4(a): 0, 0, 4!; etc., 1 (s) sphere centers at 4(e): 
1, ], 0; etc. The  3 6 layers are normal  to e. 

The I structure is close to that  of elemental  Pa and 
the D structure is close to that of F-Pu. The structures 
are also found (with tripled unit ceils due to atomic 
ordering) in a large family of suicides and germanides 
as follows: I --+ MoSi2, Q --+ CrSi2, D --+ TiSi2 (see e.g. 
Pearson,  1972; Hellner,  1986). 

O K H  (p. 231) describe another  (10+4)-coordinated  
sphere packing (called by them c.c.o.) derived f rom I by 

i" Unfortunately, 'D' is used in two contexts in this section. The 
notation is well established in both instances: for positions in sphere 
packing (e.g. Wells, 1984) and for the lattice complex (e.g. Fischer & 
Koch, 1983). As long as the reader bears in mind the two uses, no 
confusion should occur. 
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periodic twinning. To generate  this structure, and 
another  related one, it is useful to consider the I 
structure in terms of its {101} layers. Viewed normal  to 
(101), the I structure is made up of distorted 44 layers 
stacked in a five-layer sequence in such a way that  each 
sphere in a layer is in contact  with three spheres in each 
of the layers on ei ther  side as shown in Fig. 3. The c.c.o. 
structure is made  up of the same layers in a two layer 
repeat  [b.c.t. and c.c.o, are the packings labeled 3-4*-3 I 
and 3-4*-3 II by Wells & Chamber land  (1987)]. The 
symmetry is Cmcm and, for spheres of unit  diameter,  
a -- (3/2) 1/2, b -- (5/2) 1/2, c -- (12/5) 1/2. Sphere centers 
are at 4(c): O, y, ¼ etc. with y -- 3/10. It  transpires that  
the net  corresponding to the centers of the te t rahedra  
in this structure is topologically identical to the Ke lv in  
structure a l though the 10-coordinated packings are 
distinct in the two cases. 

The c.c.o, structure suggests the construct ion of 
another  (10+4)-coordinated  sphere packing from a 
related distorted 44 net as shown in Fig. 4. The 
symmetry is Pnma and I call it O (for or thorhombic) .  
For unit  d iameter  spheres, a = 151/2/2, b = (12/5) 1/2, 
c = 1. Sphere centers are at 4(c): x, 1,z; etc. with 

(a) 

(b) 

Fig. 3. (a) The positions of sphere centers in (101) layers of the I 
(b.c.t.) 10-coordinated sphere packing. In this projection, there are 
five positions for the layers. (b) The c.c.o. 10-coordinated sphere 
packing as a two-layer stacking ol the same layers. The view is 
along ¢ of the Cmcm unit cell (b horizontal) and the two layers 
differ in elevation by c/2. Lighter lines connect one point to its 
nearest neighbors in an adjacent layer. 

x = 7/20, z = 7/8. It is interesting, but  perhaps not  
obvious, that  the five-layer stacking of such layers 
analogous to that  shown in the top part  of Fig. 3 
produces the D structure described above. 

In all structures of this section, each sphere has ten 
equidistant  neighbors and four more  at a distance 
(3/2) 1/2 times greater. The packing density is the same: 
the fraction of space filled by the spheres is 
p = 27r/9 = 0 .698 . . . ,  cf. p = rr/3 x 21/2 = 0 .740 . . .  for 
closest packing and p - -  31 /2 : r r /8  - -  0.680 for b.c.c. There  
are six te t rahedral  holes per  sphere and their  centers 
define a 4-connected net  corresponding to a space filling 
by 14-face polyhedra.  These nets are described below. 

Many other  10-coordinated sphere packings are 
known (OKH).  Examples  from crystal chemistry are 
the metal  structures of CrB, FeB and MoB, and the 
anion structures in TisTe4 and two polymorphs  of MoS2; 
these are not  t.p. structures. 

4. Der ivat ion of some space-filling polyhedra 

In an al ternative approach to identification of candi- 
dates for space-filling polyhedra,  I start with the holes 
of c.c.p, with two te t rahedral  and one octahedral  hole 
per  lattice point  (sphere center).  Each oc tahedron  can 
be divided into four te t rahedra  by a diagonal; as there  
are three equal  diagonals, there are three sets of four 
possible te t rahedra l  sites per oc tahedron  as shown in 
Fig. 5. Each  f.c.c, lattice point  is surrounded by eight 
te t rahedra l  sites and six octahedral  sites, the l a t t e r  
along the i x ,  + y  and + z  directions. To generate  a 
simple po lyhedron  with 24 vertices (14 faces) 
surrounding a lattice point,  16 addi t ional  vertices must 
be added to the te t rahedra l  sites. This means selecting 
one each of each of the three sets of four possible 
te t rahedra l  sites per octahedral  site in such a way that  
an appropr ia te  po lyhedron  is generated.  Two e x a m p l e s  

Fig. 4. The positions of sphere centers in (010) layers of the O 10- 
coordinated sphere packing. A unit cell is outlined (a is horizontal). 
The two layers differ in elevation by b/2 and lighter lines connect 
one point to its nearest neighbors in an adjacent layer. 
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tz 

x - 3 -  

Fig. 5. The three sets of four tetrahedral sites derived from subdivision 
of an octahedron. 

of the procedure are shown in Fig. 6. In the first case, all 
six sets of four sites in planes normal to z are chosen. 
The polyhedron is topologically equivalent to the 
Kelvin polyhedron (truncated octahedron) and is 
labeled K. 

To help in identifying polyhedra, they are assigned a 
code pqr(s). In this code, p, q and r are the numbers of 
selected sets of four tetrahedral sites normal to z, x and 
y, respectively, and s is the number of quadrangular 
faces of the polyhedron (all polyhedra have only four-, 
five- and six-sided faces; the number of five-sided faces 
is 12 - 2s and the number  of six-sided faces is 2 + s). 
The code for the Kelvin polyhedron is 600(6). The 
second example in Fig. 6 has a code 420(2). This is in 
fact the second of two space-filling polyhedra described 
by Williams (1968) so it is labeled WE (Williams called it 
the fl-tetrakaidecahedron). 

There are two sequences of polyhedra that can be 
generated in this way (Fig. 7). In the first sequence, the 
two sets of four tetrahedral sites normal to z in the +z  
directions are selected and the labels x and y are arbi- 

(a) 

(b) 
Fig. 6. Two space-filling polyhedra derived by the procedure described in the text. (a) The K polyhedron, (b) the W2 polyhedron. 
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trary. In the second sequence, the set normal  to z in the 
+ z  direction and the set normal  to y in the -by direction 
are chosen. The requi rement  of 14 faces per po lyhedron  
limits the possibilities to those shown in Fig. 8. As far as 
I can determine,  only five of these polyhedra  are space 
filling, and those that  do not  appear  to be space filling 
are labeled X. It seems possible that  a proof  that  a 
po lyhedron  does not  fill space could be difficult, but it is 
noted  that  the space-filling possibilities identified are all 
those that  have a zero in the code (see Fig. 7). 

K and W2 are described above. W1 was also illu- 
strated by Williams (1968). The po lyhedron  labeled O I 
have not  found discussed before but, as shown below, it 
does fill space. The po lyhedron  labeled K' was de- 
scribed by Weaire & Phelan  (1994b), who called it a 
' twisted Kelvin cell'; it was also identified as a space 
filler by Aste et al. (1996). It turns out that  it corre- 
sponds to the Voronoi  po lyhedron  of r and l layers of 
the (10+4)-coordinated  t.p. sphere packings described 
above. 

o 

K 600(6) O h W 1 510(4) C2v X 411(3) C2v 

W 2 420(2) O2h X 321(2) C2v X 222(2) O4h 

¢ 

O 420(4) C s K' 330(4) D 2 X 321(2) C s 

X 411(4) C s X 321(3) C 1 X 312(3) C s X 222(3) C 2 

Fig. 7. The 14-face polyhedra obtained from c.c.p. The eight tetrahedral holes around a central sphere are shown as larger circles and one of the 
three sets of tetrahedral sites (smaller circles) surrounding an octahedral hole has been selected. Underneath each diagram is a letter symbol 
used as a name, a numerical code described in the text and the symmetry of the polyhedron. 
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It might be noted that only a small subset of possible 
14-face polyhedra with four-, five- and six-sided faces 
and 24 vertices appears in Fig. 7. A notable omission is 
the 'Goldberg' polyhedron, with two six-sided and 
twelve five-sided faces, that is a conspicuous feature of 
many clathrate structures. However, it is known that 
this polyhedron does not fill space (Aste et al., 1996). It 
would seem to be rash to speculate that other space- 
filling polyhedra will not be identified, although it is 
reassuring that the polyhedra corresponding to the t.p. 
sphere packings described above are all recovered. 

5. Space-filling polyhedron packings 
Structures derived by packing the polyhedra of the 
previous section are described next. Coordinates for 
conformations of the structures with unit edge and with 
the volume maximized subject to that constraint are 
given subsequently. 

K. The Kelvin (sodalite) structure of packing trun- 
cated octahedra is well known (see e.g. OKH, p. 316) 
and not directly illustrated here. 

W1. The W1 polyhedra pack to form rectangular 
layers with layer symmetry cram2 (translations along a 
and h normal to the 2 axis in the z direction, see e.g. 

e 

(b) 
Fig. 8.Part of a layer of W1 polyhedra. (a) and (b) show the same four 

polyhedra viewed from opposite sides. 

OKH, p. 381 for layer group symmetry). A part of such 
a layer is shown in Fig. 8. The layer is polar and, in the 
space-filling packing, pairs of layers of alternating 
polarity are combined together and then pairs of such 
double layers are rotated by 90 ° to produce a centro- 
symmetric four-layer structure of symmetry P42/ncm. 
In the polyhedron packing, the layers are metrically 
square and the arrangement of the centers of the 
polyhedra corresponds to a body-centered tetragonal 
lattice with c/a > 21/2. As explained above, this is not a 
t.p. structure. The stacking_sequence of the polyhedron 
packing is symbolized W 1 • W ; . . .  with arrows indi- 
cating the direction of the polar direction of the layers. 

W2. The corresponding layers of WE polyhedra look 
like the lower half of Fig. 8 and the layers have a mirror 
plane containing the translations (layer symmetry 
cmmm). Alternate layers in the three-dimensional 
stacking are related by a rotation of 90 ° to produce a 
two-layer stacking WE with symmetry P42/mnm. The 
corresponding sphere packing is again b.c.t., and again 
the 4-connected net cannot be derived as the dual of a 
sphere packing. 

Intergrowth structures can be formed by interleaving 
K, W1 and WE layers. The K and WE layers will be 
scandwiched > between )W 1 la)L~_s in sequences 
W 1 . K .  W 1 . . .  and W 1 . W  E • W 1 . . . .  The K poly- 

hedron will be distorted from cubic symmetry to a 
shape similar to that shown in Fig. 6. 

O. The O polyhedra pack to form rectangular layers, 
with mirror symmetry in the middle of the layer, of 
symmetry p21am and with polyhedra in two orientations 
in the layer as shown in Fig. 9. Stacking these layers 
related by a 21 axis in the z direction produces a 
structure with symmetry Pnam (Pnma in the standard 
setting). This packing is derived as the dual of the O 
(10+4)-coordinated sphere packing described above. 

Perhaps less obvious is that a layer consisting of half 
K polyhedra and half WE polyhedra can intergrow with 
a layer of O polyhedra to produce a structure labeled 
K W  2 + 20.  This O layer is different from the layer in 
the O-only packing of the previous paragraph and in 
fact both layers are oblique as shown in Fig. 10. The 

Fig. 9. Part of a layer of O polyhedra and the encapsulated spheres. 
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layers have symmetry p112/m and that of the resulting 
structure is monoclinic, P2/m. Coordinates for this 
structure are given below. 

K'. The last group of structures to be considered are 
the duals of the (10+4)-coordinated sphere packings 
derived from stackings of 3 6 layers and involve the K 
and K' polyhedra. The polyhedron packings consist of 
hexagonal or pseudo-hexagonal layers of polyhedra 
encapsulating spheres forming 36 layers as shown in Fig. 
11. The K' polyhedra are chiral and left (right) forms 
occur in the l (r) layers of the sphere packing. The 
possibilities with all polyhedra related by symmetry are 

- ! ! ! 

labeled K o, KQ and KOQ, corresponding to the D, Q 
and DQ packings. 

The rs and rsls packings of two kinds of sphere 
described above correspond to alternating layers of K 
and K' polyhedra. 

A packing of K polyhedra corresponds to an s layer 
of the sphere packing. Packing only/(7 polyhedra in the 
I structure produces a tetragonally distorted version of 
the sodalite structure (Fig. 11). In the tetragonal 
(14/mmm) structure, the vertices are of two kinds: four 

in 4(d): 0, ½,1 etc. and eight in 8(j): x, 1, 0 etc. with x 
0.25. It is interesting that in BaPd2P4 (Johrendt & 
Mewis, 1994) the Ba atoms have the I (b.c.t.) packing 
with c/a = 0.87 [cf. c/a = 0.816.. .  for the (10+4)- 
coordinated sphere packing] and Pd and P (x = 0.27) 
are in the tetrahedra forming together a tetragonally 
distorted Kelvin structure. BaNi2P4 has the same 
structure (Keimes et al., 1995). 

A structure of all K' polyhedra has also been found 
in chemistry (cf. OKH, p. 334). The Ba atoms in 
BaCu2P4 are in the D sphere packing and the Cu and P 
atoms are at the vertices of the twisted Kelvin poly- 
hedra (compare with BaPd2P4 discussed above). 
Indeed, the original (Diinner & Mewis, 1990) illustra- 
tion of the structure looks not unlike a fragment of a 
foam of uniform bubbles. 

6. Shell structures (coordination sequences) 

The shell structure of foams of congruent bubbles is of 
interest (Aste et al., 1996). A central bubble shares faces 
with 14 other bubbles. These in turn share faces with n 2 
other bubbles and so on - notice that each bubble is 
counted only once. The sequence of nk'S is the coordi- 
nation sequence. The cumulative number of bubbles 
within a topological distance k from a central one is Ck; 

t 
(a) 

(b) 

Fig. 10. Layers in the KW 2 + 2 0  structure projected on (010). (a) The 
K + W 2 layer with centers at y ---- 0. (b) The O layer with centers at 
y = 1/2. 

(a) 

(h) 
Fig. 11. (a) Left: a K' polyhedron; right: part of a (100) layer of the Q 

structure showing close-packed spheres (large circles) and the 
encapsulating K' cells. (b) Left: a distorted version of the K 
polyhedron; right: part of a (100) layer of the I structure showing 
close-packed spheres (large circles) and the encapsulating K cells. 
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Table 1. Shell structure (coordination sequence) of  
polyhedra in various foams (polyhedron packings) 

nk is the number of topological neighbors in the kth shell. [...J 
signifies truncation of the fractional part (round down) of a non- 
integral number, p~ is the topological density described in the text. 

Foam nl nz n3 Equation Conditions p~ 
K 14 50 110 12k 2+2  k > 0  4.0 
K~ 14 52 114 /25ka/2J +2 k > 0 4.167 
1('o0 " 14 52 115 [101ka/8J + 2 k > 0 4.208 
K~ 14 52 116 /38k2/3j +2 k > 0 4.222 
O 14 52 116 [38k2/3J +2  k > 0 4.222 
W1 14 52 120 14k 2 - 6  k > 2  4.667 
W2 14 54 124 14k 2 - 2  k > l  4.667 

it is just the sum of all the nk'S. Coordina t ion  sequences 
for nets and lattices in three dimensions can often be 
expressed in terms of expressions quadratic in k 
(O'Keeffe,  1995; O'Keeffe  & S. T. Hyde, 1996) and the 
coordinat ion sequence for the Kelvin structure is the 
same as for the b.c.c, structure if all (8+6)  neighbors are 
counted. In this case, one has simply n k = 12k 2 + 2. For 
the structures studied here, coordinat ion sequences 
were counted (typically for k < 50) and equations 
found empirically. In every case, a single expression 
could be used for every k with the help of the ' round 
down'  funct ion as shown in Table 1. A useful measure l 
of topological  density, p~ ,  is the limit of ck/k 3 as k 
c~ (O'Keeffe,  1991). This is just a/3 where a is t h e  
coefficient of the quadratic term in the expression for 
n k. For the structures with one kind of bubble described 
here, p ~  varies f rom 4 to 14/3 = 4.66 . . . .  Notice that  
the Kelvin structure is the least dense (has the fewest 
topological  neighbors)  and is the only 14-coordinated 
packing that  corresponds to a lattice. A similar situation 
holds for the 12-coordinated closest packings for which 
the f.c.c, lattice packing has the lowest topological  
density (O'Keeffe,  1995; Conway & Sloane, 1997). 

Remarkably,  the topological density of foams that  are 
duals of the F rank-Kasper  phases are significantly 
higher (Grosse-Kunstleve et al., 1996) even though 
they have lower coordinat ion numbers. Thus, for 
the type I clathrate structure (dual of the A15 struc- 
ture), with average coordinat ion number  13.5, 
Poo = 187/36 = 5 .19 . . .  and for the type II hydrate  
structure (dual of the C15 structure), with average 
coordinat ion number  13.33, p ~  = 2371/432 = 5.48 . . . .  
It should be of interest  to correlate these topological  
densities with other  propert ies  of foams. 

7. Coordinates for nets 

Here  coordinates  are given for nets identified by the 
space-fining po lyhedron  as in the text above. The first 
seven are for structures formed by space fillings of 
congruent  polyhedra  and the last is an example of a 
structure formed by a combinat ion of different poly- 
hedra.  Free parameters  are de termined by fixing all 
edge lengths equal  to unity, and then (approximately)  

maximizing the volume subject to this constraint.  The 
origin is always taken  at a center of symmetry if present  
- note,  in particular, this is 'origin choice 2' for Fddd 
and P42/ncm in International Tables for Crystal- 
lography (Hahn,  1983). The vertices of the 4-connected 
net  are characterized by a vertex symbol (O'Keeffe,  
1991) in which the six numbers  specify the size of the 
rings (the number  of edges in polyhedron  faces in this 
instance) meet ing at the vertex, with pairs of opposite 
angles appearing sequentially. 

K: Im3m, a = 2.8284 
4 . 4 . 6 . 6 . 6 . 6  in 12(d): 1,0,½ etc. 

W2: P42/mnm, a = 2.328, c -- 3.868 ]k 
5 . 5 . 5 -  5 - 6 - 6  in 4(d): 0,½,¼ etc. 
4 . 5 . 5 . 6 . 5 - 6  in 8(j):  x , x , z  etc., 

= 0.1293. 
x = 0.1519, 

W1 ( ~V1 • W~ ): P42/ncm, a = 2.310, c = 7.856 ]k 
4 . 4 . 6 . 6 . 6 . 6 i n 4 ( a ) : i , ~ , O e t c .  
5 5 5 . 5  6 6 i n 4 ( b ) : ~ , ~ , 3 e t c .  
4- 4 . 6 . 6 . 6 . 6  in 8(i): x , x , z  etc., x = 0 . 0 9 7 0 ,  

z = 0.0614 
4 . 5 . 5 . 6 . 5 . 6  in 8(i): x , x , z  etc., x = 0 . 0 9 7 0 ,  

z = 0.1886. 

O: Pnma, a = 4.680, b = 3.707, c = 2.468 
4 . 4 . 5 . 6 . 6 . 6  in 8(d): x , y , z  etc., x = 0 . 0 5 7 7 ,  

y = 0.1151, z = 0.1231 
4 . 5 . 5 . 6 . 6 . 6  in 8(d): x , y , z  etc., x = 0 . 1 9 2 8 ,  

y = 0.1151, z = 0.4460 
4 . 5 . 5 . 6 . 6 . 6  in 8(d): x, y, z etc., x = 0.1315, y = 0.0, 

z = 0.7934. 

KQ. P6422, a 2.462, c = 6.083 
4 . 4 . 6 . 6 . 6 . 6  in 3(a): 0 , 0 , 0  etc. 
4 . 4 . 5 . 5 . 6 . 6  in 3(c): ½,0, 0 etc. 
4 . 5 . 5 . 6 . 6 . 6  in 12(k): x ,y , z ;  etc., x = 0 . 2 6 5 5 ,  

y = 0.3828, z = 0.4235. 

K' D • Fddd, a = 2.350, b = 4.521, c = 8.093 ,~ 
4 . 4 . 5 - 6 . 6 - 6  in 16(g): ~, ~, z; etc., z = 0.5071 
4 . 5 -  5 . 6 . 6 . 6  in 32(h): x ,y , z ;  etc., x = 0 . 3 0 3 9 ,  

y = 0.1849, z = 0.3168. 
I . _ _  K'DQ. Fddd, a 2.464, b -- 4.259, c -- 16.252 

4 . 4 . 5 . 5 . 6 . 6  in 8(a): ~,~,i; etc. 
4 . 4 . 6  6 6 6 in 8(b): ~ , - , - ;  etc. 
4 . 4 . 5  6 6 6 in16(g) : -~  81 ,5, z; etc., z = 0.5015 
4 . 5 . 5 . 6 . 6 . 6  in 32(h): x ,y , z ;  etc., x = 0 . 1 2 5 ,  

y -- 0.0076, z -- 0.4088 
4 . 5 -  5 . 6 -  6 -6  in 32(h): x ,y , z ;  etc., x = 0 . 2 9 6 6 ,  

y = 0.1877, z = 0.2163. 

K + W 2 .-t- 20 :  P2/m, a = 4.800, b = 4.044, 
c = 2.197 A, 13 = 99.87 ° 

4 - 4 -  6- 6- 6 . 6  in 2(k): 0, +y ,  ½, y = 0.2283 
5 - 5 . 5 - 5 - 6 . 6  in 2(j):  ½, +y ,  0, y = 0.2822 
4 . 5 . 5 . 6 . 6 . 6  in 4(0): x ,y , z ;  etc., x = 0 . 2 5 7 9 ,  

y = 0.2627, z = 0.3015 
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4 . 4 . 6 -  6 . 6 . 6  in 4(o): x , y , z ;  etc., x = 0 . 0 7 0 9 ,  
y = 0.3764, z = 0.1955 

4 . 5 . 5 . 6 . 5 . 6  in 4(0): x , y , z ;  etc., x = 0 . 4 1 1 5 ,  
y ----- 0.3764, z --- 0.5916 

4- 4 . 5 . 6 . 6 . 6  in 4(0): x , y , z ;  etc., x = 0 . 1 9 0 1 ,  
y = 0.1236, z = 0.6230 

4 . 5 . 5 . 6 . 6 . 6  in 4(0): x , y , z ;  etc., x---0.3401, 
y = 0.1236, z -- 0.0. 

I am grateful to J.-F. Sadoc and N. Rivier for a n  
oppor tuni ty  to a t tend the NATO school on foams at 
Cargese, Corsica in May 1997 where I learnt  a great 
deal about  packing problems and their  importance.  This 
work was suppor ted by the US Nat ional  Science 
Foundat ion,  grant D M R  94 24445, and by the Materials 
Research Science and Engineer ing  Center  at ASU, NSF 
grant D M R  96 32635. 
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